
Solutions to Problem 1. LetR = {2, 3, 4}. Note that

PRR =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0
0.5 0.4 0.1
1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

is the transition probability matrix of a self-contained Markov chain, and no proper subset ofR also forms a Markov
chain. Therefore, states 2, 3, and 4 are recurrent, and state 1 is transient.

Solutions to Problem 2.

a. From the transition probability diagram (below), we see that all states communicate with each other, because we
can find a sequence of positive probability transitions that starts at state 1, goes through all the other states, and
then returns to state 1 (e.g., 1− 2− 3− 4− 2− 5− 1). Therefore the entire state spaceM= {1, 2, 3, 4, 5} is a recurrent
class, and so all states are recurrent.
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b. LetR = {2, 5}. From the transition probability matrix, we see thatR is a recurrent class because

PRR = [
0.8 0.2
0.5 0.5] ,

indicating thatR is a self-contained Markov chain and no proper subset ofR is a Markov chain. Therefore, states 2
and 5 are recurrent. From the transition probability diagram (below), we can also see that states 1, 3, and 4 are
transient, because the process will eventually leave each of these states and never return.
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c. From the transition probability diagram (below), we see that all states communicate with each other, because we
can find a sequence of positive probability transitions that starts at state 1, goes through all the other states, and
then returns to state 1 (e.g., 1 − 3 − 4 − 2 − 5 − 1). Therefore the entire state spaceM= {1, 2, 3, 4, 5} is a recurrent
class, and so all states are recurrent.
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Solutions to Problem 3. Note that states 2, 5, and 6 are absorbing states, because pii = 1 for i = 2, 5, 6. In addition,
note that the other states, 1, 3, and 4, are transient, because each of these states transitions to one of the absorbing states
with positive probability. So, T = {1, 3, 4}, and

N = (I − PT T )−1 =
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0.4
0.2 0.4 0.3
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

−1

≈

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0.4
0.333 1.667 0.633
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The absorption probabilities whenR = {2} are:

αT R = NPT R ≈
⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0.4
0.333 1.667 0.633
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.5
0
0.9

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≈

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.86
0.737
0.9

⎤
⎥
⎥
⎥
⎥
⎥
⎦

So α32 ≈ 0.737. Similarly, the absorption probabilities whenR = {5} are:

αT R = NPT R ≈
⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0.4
0.333 1.667 0.633
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.1
0
0.1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≈

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.14
0.097
0.1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

So α35 ≈ 0.097. Finally, the absorption probabilities whenR = {6} are:

αT R = NPT R ≈
⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0.4
0.333 1.667 0.633
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0.1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≈

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0.167
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

So α36 ≈ 0.167.

The expected times to absorption from T are:

µT = N1 ≈
⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0.4
0.333 1.667 0.633
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1.4
2.633
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Therefore, µ3 = 2.633.
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Solutions to Problem 4. Looking at the transition probability matrix, we see that the Markov chain is irreducible. Let
R = {1, 2, 3, 4}. We want π4:

π⊺
R
PRR = π⊺

π⊺
R
1 = 1

⇔

0.70π1 + 0.14π2 + 0.14π3 + 0.05π4 = π1
0.14π1 + 0.70π2 + 0.14π3 + 0.05π4 = π2

0.14π1 + 0.14π2 + 0.70π3 + 0.05π4 = π3

0.02π1 + 0.02π2 + 0.02π3 + 0.85π4 = π4
π1 + π2 + π3 + π4 = 1

⇔

−0.30π1 + 0.14π2 + 0.14π3 + 0.05π4 = 0
0.14π1 − 0.30π2 + 0.14π3 + 0.05π4 = 0
0.14π1 + 0.14π2 − 0.30π3 + 0.05π4 = 0

π1 + π2 + π3 + π4 = 1

Note that we removed the last equation from π⊺
R
PRR = π⊺, because any one of them is redundant. Solving this system

of equations, we get:
π1 ≈ 0.2941 π2 ≈ 0.2941 π3 ≈ 0.2941 π4 ≈ 0.1176

Therefore, the long-term market share for Poisson Puffs is 11.76%.

Solutions to Problem 5. Looking at the transition probability matrix, we see that the Markov chain is irreducible. Let
R = {1, 2, 3, 4}. We want π4:

π⊺
R
PRR = π⊺

π⊺
R
1 = 1

⇔

0π1 +
1
3
π2 +

1
3
π3 +

1
3
π4 = π1

1
2
π1 + 0π2 +

1
3
π3 +

1
3
π4 = π2

1
2
π1 +

1
3
π2 + 0π3 +

1
3
π4 = π3

0π1 +
1
3
π2 +

1
3
π3 + 0π4 = π4

π1 + π2 + π3 + π4 = 1

⇔

−π1 +
1
3
π2 +

1
3
π3 +

1
3
π4 = 0

1
2
π1 − π2 +

1
3
π3 +

1
3
π4 = 0

1
2
π1 +

1
3
π2 − π3 +

1
3
π4 = 0

π1 + π2 + π3 + π4 = 1

Note that we removed the last equation from π⊺
R
PRR = π⊺, because any one of them is redundant. Solving this system

of equations, we get:

π1 =
1
4

π2 =
9
32

π3 =
9
32

π4 =
3
16

Therefore, the AGV spends 3/16 of the time at the output buffer in the long run.

Solutions to Problem 6.

a. Looking at the transition probability diagram, we can see that {1, 2} and {3, 5} form self-contained Markov chains,
and no proper subsets of {1, 2} or {3, 5} form a self-contained Markov chain.

b. Recurrent states: 1, 2, 3, 5 (these are states that are part of a recurrent class, by part a)
Transient states: 4, 6 (these are states not part of a recurrent class)

c. LetR = {1, 2}. We want π1. From the transition probability diagram, PRR = [
0.2 0.8
0.7 0.3]. Therefore,

π⊺
R
PRR = π⊺

π⊺
R
1 = 1

⇔

0.2π1 + 0.7π2 = π1
0.8π1 + 0.3π2 = π2

π1 + π2 = 1
⇒ π1 =

7
15
, π2 =

8
15

So, the long-run fraction of time the UAV spends in region 1 is 7/15.
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d. This is a little tricky: the definition of an absorbing probability requires an absorbing state, that is, a recurrent class
with only one state.

Let’s replace states 3 and 5 with a “super state” called 7. We end up with the following transition probability diagram:
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Now, let T = {4, 6} andR = {7}. We want α47:

αT R = (I − PT T )−1PT R = ([
1 0
0 1] − [

0.1 0.2
0.1 0.1])

−1

[
0.5
0.7] ≈ [

0.747
0.861]

Therefore, α47 ≈ 0.747.
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